
Automating boring and repetitive
UbuCon Asia video and subtitle stuffs

Youngbin Han
youngbin@ubuntu-kr.org
launchpad.net/~ybhan

Hi, There!

- UbuCon Asia founder & organizer
- It’s my first experience to organize global event actually!

- Leader, Ubuntu Korea Community (Korean LoCo)
- Still a college student studying Software Engineering at

Sungkonghoe University (on last semester! yay!)
- A DevOps engineer at Cloudmate Co. Ltd. who just started

career last fall
- Some links

- wiki.ubuntu.com/YoungbinHan
- launchpad.net/~ybhan
- github.com/sukso96100
- youngbin.xyz

What we tried to automate

- Generating & Translating Subtitle for Non-English
sessions.

- Using some Speech-to-text, Machine translation APIs

- Generating and putting cover video(Session title,
Speaker bio, sponsor logos) for each sessions
recordings and merging with recordings

- Use GitHub Actions to trigger Video & SUbtitle
batch jobs.

Let’s talk about
subtitles first.

Subtitle on Non-English sessions of UbuCon Asia 2021

We’ve been discussing about Non-English sessions and
Subtitles for that from the beginning.

Some LoCo organizers from country where English is not used as first language worried about
language barrier even before forming the event committee.

Yes, I like the idea of the event. But if we limit sessions to English only,
It will be difficult for me to gather enough speakers from my Local community.

Hi, I’m looking for people who would like to join me to plan Ubuntu Asia virtual conference.
Would like to join to shape out some event details?

Many reasons to worry about language barriers…
(For people from where English isn’t first language)

- Really, Just don’t understand or not good enough at English
- Can read and write English very well, But not good at and not confident with

speaking.
- Mostly because don’t have much experience on having face to face conversation in English.
- Or couldn’t get enough chance to experience English conversation.

- Can read/write well, Fluent with English. But still not confident with giving
presentation in English.

- Worry about making mistakes during presentation.
- Sometimes, Worry that other people from same country pointing out small mistakes.

In my cases, But not just limited to me.

Sure, It’s my pleasure! But… Can I give presentation in Korean?

Hey, I saw you’ve been working on interesting project,
Why don’t you introduce that on UbuCon Asia?

So, How we should accept and handle
Non-English sessions?

- Non-English talks with translation or interpretation? (e.g. Language specific
tracks on other conferences)

- Easiest way, low cost, but only specific group of people can understand the stories. (e.g.
Korean session: Only who do Korean can understand)

- Many offline global events: Hired professional interpreters.
- This option is too much expensive for us!

- Hiring subtitle translators?
- Still requires bunch of cost for hiring person.

- Volunteers?
- We don’t know if anyone will apply for this time consuming jobs of the new and not widely

known event.

If we limit session to
English only, We can’t

bring enough speakers!

“Language-specific track
without translation”

Only limited participants
can understand!

We need to accept
Non-English sessions!

Hire professional
translators, interpreters

or subtitle writers?

Infinite discussion loop about dealing
with language barriers of speakers

that brought headaches and the loop
seems to never ends continue forever.

That’s too expensive!
We don’t know how much
income we may earn from
sponsorship or donations!

Let’s try to gather
volunteers who will work

on subtitles.We don’t even know how many
volunteers we’ll be possible to

gather for this new event!
(+ I’m too busy with work/school to

gather volunteers.)

Could be too much work
for volunteers even if we gather

enough number of people.

Why don’t we ask
speakers to provide

script of their
presentation?

What kind of conference
ask speakers to do that?!

We don’t have enough
resource for this! It might
be better to accept only

English sessions!

Trying to reduce efforts and spending

- YouTube’s Auto Captioning feature
- Generates subtitles automatically. Not perfect, But mostly ok for understanding the

context.
- Needs some touch from human to improve machine translated result.
- But language support is limited.

- Google Cloud: Speech to text, Translation API
- Supports almost any languages.
- Need some scripts to convert recognition output to *.srt file.
- Paid, But expected to be cheaper than hiring professionals.
- Like YouTube’s Auto Caption, Still need some touch from human.

- AWS Transcribe, Azure Speech to text
- Didn’t considered, Because of their limited language support.

Before using it

- Still need volunteers, But not all local teams need to gather volunteer.
- People from some regions are just fine with English presentation.
- Check which local team will gather volunteers and which local team won’t.

- Quick PoCs with pyTranscriber that uses Google Speech to text.
- Testing with tech conference video in Korean, Japanese, Chinese and Indonesian.
- https://github.com/raryelcostasouza/pyTranscriber
- Result was similar with what YouTube’s Auto Caption provided
- Of course, the result really depends on quality of the audio in videos

https://github.com/raryelcostasouza/pyTranscriber

Setting up scripts & pipelines

- Python Scripts: For generating subtitles, translating into English
- Used script from Google Cloud tutorial repo

https://github.com/GoogleCloudPlatform/community/tree/master/tutorials/speech2srt
- The code was written for old SDK version, needed to modify it for recent version.

- GitHub Actions
- For running scripts in the GitHub repo when it’s needed to be run.
- Also includes json file with video file and translation locale source and target information.
- Use Matrix build to run tasks per each videos in parallel

- Google Cloud Python Libraries & CLIs (gsutil)
- To interact with GCP programmatically on CI environment
- gsutil CLI: to interact with GCP storage bucket on CI workflow

https://github.com/GoogleCloudPlatform/community/tree/master/tutorials/speech2srt

Useful function I newly learned: “fromJSON()”

- Parameters for matrix build (List of session informations) should not be
hard-coded into workflow yaml file.

- Can read JSON data from *.json file or from environment variable.

The JSON file for matrix build

{

 "include": [

 {

 "input": "contributhon_l10n_ko.mp4.flac",

 "from": "ko",

 "to": "en"

 },

 {

 "input": "desktop_ubutu_on_laptopsraspberrypis_ja.mp4.flac",

 "from": "ja",

 "to": "en"

 },

...

]

}]

Loading JSON file with “fromJSON()” on runtime
jobs:

 job1:

 runs-on: ubuntu-latest

 outputs:

 matrix: ${{ steps.set-matrix.outputs.matrix }} # Declare Job output variable

 steps:

 - uses: actions/checkout@v2

 - id: set-matrix

 run: |

 JSON=$(cat ./videos.json) # Load JSON file into variable

 JSON="${JSON//'%'/%25}" # Handle escape sequence (%)

 JSON="${JSON//$'\n'/%0A}" # Handle escape sequence (\n)

 JSON="${JSON//$'\r'/%0D}" # Handle escape sequence (\r)

 echo "::set-output name=matrix::${JSON}" # Set Job output as one-line JSON string data

 job2:

 needs: job1

 runs-on: ubuntu-latest

 strategy:

 matrix: ${{fromJSON(needs.job1.outputs.matrix)}} # Get JSON string data from previous job and load as JSON object

fromJSON() in action

fromJSON()

So, Was it worked?

- In most cases, yes. (Korean, Indonesian, Chinese(China))
- Did not worked well with some video:

- If the breathing between words or sentences too long (Japanese)
- Google Cloud speech-to-text placed “|” between words. weird.

- If the audio includes noises and sounds blurry (Chinese(Taiwan)
- Drops some whole sentences.

- Other Speech-to-text are better in some cases
- The recording in Japanese: Did not work well with Google Cloud Speech-to-text but worked

ok with YouTube Auto Caption. (Another weird thing…)
- The recording in Chinese(Taiwan): YouTube Auto Caption has no support for Chinese, Tried

with Azure Speech-to-text instead. The result wasn’t still great enough. But slightly better
then GCP’s. (Didn’t drop some whole sentences.)

Putting short
introductory video on
each recordings

We automated generating and translating subtitle with CI.
Why not also automate rendering videos?

Because, creating these videos short videos and putting on the beginning of
each recordings by hand is really… boring and repetitive job.

...

...

20 Pre-recordings + 10 Post-event recordings...

Trying out Remotion.dev: Write(!) video with React.js

github.com/remotion-dev/remotion

npx remotion render ...

Writing video template &
testing with 30s Big Buck Bunny video

Testing with long videos (30mins, 1hours)
on local machine
Seemed to be ok

- 30min ~ 45min videos: OK
- 1hour videos: Also OK
- Much longer videos

- Fumihito(JP LoCo) tested with 2~3 hours videos: Mostly OK

- But It took too much time to render
- Took 2~4 hours to render 30~45min videos on laptop with Intel 10th Gen i7
- This means It will take much longer time on GitHub Actions

Modify remotion video to accept parameters
● Update video code to accept JSON data as parameters

○ e.g. Title, Speaker info, Sponsor logos…
○ https://www.remotion.dev/docs/parametrized-rendering

{

 "videoPath": "oem_metapackages_concourse_ci.mp4",

 "sessionTitle": "OEM metapackages & Concourse CI",

 "speakers": [

 {

 "name": "Shih-Yuan Lee (FourDollars)",

 "bio": "Software Engineer, Canonical",

 "photoPath": "https://2021.ubucon.asia/.../profile.jpg"

 }

],

 "sponsorsData":[...]

}

{

 "videoPath": "having_fun_flutter.mp4",

 "sessionTitle": "Having fun with Flutter Desktop development",

 "speakers": [

 {

 "name": "Rafal Wachol",

 "bio": "Software Engineer, Flutter Community",

 "photoPath": "https://2021.ubucon.asia/.../profile.jpg"

 }

],

 "sponsorsData":[...]

}

oem_metapackages_concourse_ci_zh_tw.jsonhaving_fun_flutter.json

https://www.remotion.dev/docs/parametrized-rendering

Modify remotion video to accept parameters
● Update video code to accept JSON data as parameters

○ e.g. Title, Speaker info, Sponsor logos…
○ https://www.remotion.dev/docs/parametrized-rendering

oem_metapackages_concourse_ci_zh_tw.mp4having_fun_flutter.mp4

https://www.remotion.dev/docs/parametrized-rendering

Also use Matrix build with fromJSON() of course.
A difference: Run glue script to generate JSON file for matrix build on runtime.

JSON parameter files

cloudmate_co_ltd_ko.json
contributhon_l10n_ko.json

fast_reboot_kexec.json
hanjp_im_project.json

having_fun_flutter.json
ukui3_tablet_mode_zh_cn.json
webhosting_cyberpanel_id.json

who_killed_my_processes_ko.json
wsl_api_integration_test_ko.json

...

JSON for Matrix build parameter

[
{
“path”:”cloudmate_co_ltd_ko.json”,
“output”:”cloudmate_co_ltd_ko.mp4”,
”videoPath”:”cloudmate_co_ltd_ko.mp4”
},
{
“path”:”contributhon_l10n_ko.json”,
“output”:”contributhon_l10n_ko.mp4”,
”videoPath”:”contributhon_l10n_ko.mp4”
}
...

]

build_matrix.py

jobs:

 initsrc:

 runs-on: ubuntu-latest

 outputs:

 matrix: ${{ steps.set-matrix.outputs.matrix }}

 steps:

 - uses: actions/checkout@v2

 - name: Setup build matrix

 id: set-matrix

 run: |

 python build_matrix.py

 JSON=$(cat ./matrix.json)

 JSON="${JSON//'%'/%25}"

 JSON="${JSON//$'\n'/%0A}"

 JSON="${JSON//$'\r'/%0D}"

 echo "::set-output name=matrix::${JSON}"

 render:

 needs: initsrc

 runs-on: ubuntu-latest

 strategy:

 matrix: ${{fromJSON(needs.initsrc.outputs.matrix)}}

Load into workflow

Seemed to be worked well with few short videos...

Then… Met another bunch of exceptions

- Couldn’t handle videos bigger than 2GB
- Node.js’s V8 limits maximum size of file to 2GB that can be loaded into buffer.

- Long videos took forever to render with cover
- GitHub Actions limits single workflow run to maximum 6 hours.
- Remotion uses headless chromium to render video

- Some speakers submitted videos in different resolution or aspect ratio.
- We told speakers to submit 1920*1080 video.
- But some people gave us 1080*720 or even different aspect ratio, 1140*1080

Dealing with V8’s 2GB limit, Remotion’s render time issue

- Previously, Used both cover video and recordings on Remotion’s timeline
- New way: Use Remotion for just rendering short cover video and

concatenate with session recording using ffmpeg.
- Remove session recording sequence and parameters from Remotion code.

- Used ffmpeg’s concatenate filter to concatenate videos.
- https://trac.ffmpeg.org/wiki/Concatenate

Dealing videos with different resolution and aspect ratio

- ffmpeg Can’t concatenate videos with different resolution.
- Also It can’t concatenate videos with different SAR(Sample aspect ratio)

1920*1080
(Requirement)

1440*1080

1280*720

Same aspect ratio (16:9) with different resolution
- Upscaled using ffmpeg’s scale filter and lanczos algorithm

- http://trac.ffmpeg.org/wiki/Scaling

ffmpeg -i input.mp4 -vf scale=1920x1080:flags=lanczos output.mp4

1920*10801440*1080

1280*720

Same resolution with different SAR(Sample Aspect Ratio)
- Upscaled using ffmpeg’s setsar filter

- https://ffmpeg.org/ffmpeg-filters.html#setdar_002c-setsar

ffmpeg -i input.mp4 -vf “setsar=1” output.mp4

1 Pixel
(SAR 40:33)

1 Pixel
(SAR 1:1)

Recording with different aspect ratio (e.g. 1440*1080)
- Different aspect ratio, But width or height is same with required resolution.

- e.g. -> 1440*1080’s width is different but height is same with 1920*1080

- Modify Remotion code to accept video resolution information, and render
cover video with that resolution.

1440*1080
Recording from speaker

1440*1080
Rendered cover video

Extract audio file from rendered video
- Audio extracted from this step is used for generating subtitles

- https://trac.ffmpeg.org/wiki/AudioChannelManipulation

ffmpeg -y -i input.mp4 -ac 1 output.flac

Video input

Downmix to
mono stream

Extracted mono
audio output

Don’t forget to install CJK fonts!
(or other required fonts if any)

- Just install font packages (e.g. Noto Fonts) on CI before running video rendering task

sudo apt install fonts-noto-cjk

Putting things all together
and some troubleshootings

Putting things all together

Original recordings
(GCP Storage bucket)

Rendered videos
(GCP Storage bucket)

Subtitles &
Translations

(GCP Storage bucket)

Speech to
text

Translation
API

Video rendering
(GitHub Actions)

recordings

rendered
videos &
audios

Video rendering
(GitHub Actions)

audios audios

recognition
result subtitle

subtitle

translation

- CI/CD in many software projects used to find any bugs or other problems
quickly, earlier and then fix it.

- To do that, the “fail-fast” strategy is enabled by default in GitHub Actions.
- On matrix build, If any parallel job fails, other all running parallel job stops automatically.

- This is good for software development, But what we’re doing here is making
GitHub Actions to do boring, repetitive and time consuming job.

- If all other video rendering tasks stops because of one failure. We need run a fresh job and
render all things from the start again. Which is very inefficient.

- We want other parallel jobs to continue even if there is failed parallel jobs.
- So, We disabled “fail-fast” strategy.

One more thing to fix: Disabling fail-fast strategy

- We wanted to accept Non-English session that most people can understand the
context. Which requires subtitle or interpretation.

- We choose to use automation tools to generate and translate subtitle and ask
volunteers to review and correct it.

- Used Google’s Speech to text and Translation API
- We could reduce amount of work for volunteers but it highly depends on audio quality and

speaker’s pronunciation.

- We automated video rendering job using Remotion, ffmpeg and GitHub Actions
- Writing video with react.js and configuring it to accept parameter is powerful to render

introductory video with same format.
- ffmpeg is useful to automate various video related jobs: concatenate, rescale, extract audio,

adjusting pixel aspect ratios, etc.
- Remotion uses Node.js and Headless Chromium: Can’t load file bigger the 2GB, Takes bunch of time

for rendering long video.

- Considerations when using GitHub Actions: 6h limit, fail-fast by default

Conclusion

Thank you!
Repos

https://github.com/ubucon-asia/2021-video-template

https://github.com/ubucon-asia/video-transcribe-tools

https://github.com/ubucon-asia/2021-video-template
https://github.com/ubucon-asia/video-transcribe-tools

