
Developing Integration Test with
WSL APIs

W S L H U B

J U N G H Y U N , N A M

M I C R O S O F T A Z U R E M V P

Contents

Motivation for starting the project

WSL SDK in Action

Problems solved while developing the SDK

Missing Pieces

Future

Motivation for starting
the project

What I learned while installing
WSL for Windows Server

The APPX/MSIX package you receive from the Microsoft
Store is in ZIP file format.

On the Windows Server, unzip the APPX package and
install it manually.

The file called Install.tar.gz is the root file system image!

Either way, you can manually install WSL on Windows 10 or
Windows Server.

So, wouldn't it be possible to customize the WSL
installation to my needs?

Curiosity about WSL

WSL is also a feature of Windows, so of course,
there is an API.

The WSL API that I found in that way is mainly
optimized for designing new distributions for WSL.

If so?

1
•It is possible to create an image contai

ning the Linux OS at will.

2
•You are free to register and unregister

WSL distributions.

3
•You can send commands from the Win

dows side and receive the results.

Then,

Wouldn't it be possible to implement
integrated test automation that is easier
to use than a virtual machine?

Wouldn't it be helpful to increase
productivity by actively customizing the
distribution for WSL?

That's how I started the project.

Introducing
the WSL
SDK project
GITHUB.COM/
WSLHUB/
WSL-SDK-COM

https://github.com/wslhub/wsl-sdk-com

What can I do with this
project?

With Any language and environment running on
Windows, you can do:
◦ Registering, Modifying, and Deleting WSL

Distributions

◦ Query WSL distribution information

◦ Convert File Paths (between WSL and Windows)

◦ Generate random names (borrowing code from
Moby/Docker)

You can do any of the above with no hassle.

WSL SDK in Action

Implement an integrated test
environment

Initializing
WSL SDK

Service Objects

Generate
random names

Download
Root File System

Distro installation
Passing/executing

commands
to the distribution

Uninstall a distro

Initializing WSL SDK
Service Objects

The WSL Win32 API just can't be used.

It must be initialized with the CoInitializeSecurity
API, but…

Depending on the environment, this API has
already been called and may not be available for
use.

So I choose a separate out-of-process COM
server model to overcome hassles.

Generating Random Names
(feat. Docker/Moby)

Used to allow WSL distributions to be dynamically
registered as needed (but human-friendly naming)

Add code by porting Docker's source code into
C#

https://github.com/moby/moby/blob/master/pkg/
namesgenerator/names-generator.go

https://github.com/moby/moby/blob/master/pkg/namesgenerator/names-generator.go

Getting the Linux root
filesystem easy
You can create it manually as described in the article
below, but…
◦ https://link.dotnetdev.kr/3qy68RT

It is recommended to use a pre-made root file system that
is easier and more convenient for everyday use.
◦ http://cdimage.ubuntu.com/ubuntu-base/releases/

Furthermore, Busybox or Alpine can be used
◦ https://github.com/0xbadfca11/miniwsl
◦ https://github.com/yuk7/AlpineWSL

https://link.dotnetdev.kr/3qy68RT
http://cdimage.ubuntu.com/ubuntu-base/releases/
https://github.com/0xbadfca11/miniwsl
https://github.com/yuk7/AlpineWSL

Utilizing the Linux Root
File System

Basically, the root file system contains the
necessary elements required to run a Linux
system.

Examples you can use:
◦ Ways to export/import existing Docker

container image

◦ Ways of registering/exporting/importing
distribution images for WSL 1 and 2

Passing/executing
commands to the
distribution

When SDK run the WslLaunch API,
◦ Create Anonymous Pipe with

CreatePipe
◦ Execute CreateProcess internally
◦ Sharing STDIN, STDOUT, STDERR

with Linux processes in WSL
◦ STDOUT, STDERR capture as a string
◦ Returns the captured content as a

string as a return parameter of the
COM API

Demonstration
EXCEL·POWERSHELL·PYTHON/JUPYTER
& VISUAL STUDIO 2022 UNIT TEST

Problems solved while
developing the SDK

CoInitializeSecurity
Problem

To use WSL's API, the caller's credentials
who calls the API must be passed to the
WSL service.

For this, an Impersonation request is
required while calling CoInitializeSecurity.

However, depending on the environment,
there are cases where the
CoInitializeSecurity API has already been
called and cannot be called again (e.g.,
Windows PowerShell, LINQPAD, etc.)

You need to run the WSL API in a
separate process to avoid this problem.

Out-of-Process COM
Server
Separation of processes is mandatory, but you want to
meet the requirements below
◦ A Windows process should be a singleton that runs only

once per user
◦ No effort is required to consider the path to the

executable or create a process
◦ Do not rely on any network resources at all
◦ Should be available locally in any language without a

separate wrapper

An out-of-process COM server that satisfies all these
conditions, so I chose it.

Thankfully

Found content on Microsoft's old collection of
example code, the All-In-One Code Framework

Exactly an out-of-process COM server
implementation in C#.

However, CodePlex, the original repository of AIO
Code Framework, is now closed.

So, I decided to look it up on GitHub.

Why still use
the .NET
Framework?

For APIs made with .NET to be
provided through COM, the creation of
type libraries must be automated,
but…

Only .NET Framework can automate
this part; .NET Core or .NET 5 does not
have this feature yet.
◦ Windows SDK and Visual C++

Compiler required to replace this
feature

.NET Framework is still advantageous
to simplify installation and execution

WslRegister-
Distribution

Perhaps among the WSL APIs,
the WslRegisterDistribution
API finds the path to the EXE
file of the process that calls it.

Create a file system for WSL
directly under the directory
path containing the EXE file
that calls this function

To freely register WSL
distributions, I made a custom
launcher.

Missing Pieces

The Hidden
LXSS Service
Manager

Information in the registry vs. LXSS Service
Manager
◦ Information that is permanently stored is

primarily stored in the registry
◦ The LXSS service manager is responsible

for executing WSL 2's built-in Linux kernel
and various services while at the same time
controlling the status of current WSL
distributions.

◦ What's available right now is the registry
and basic C-style APIs are the best!

◦ Surprisingly, neither the LXSS service
manager API nor the COM interface is
revealed until today.

ILxssUserSession
Interface

As mentioned earlier, the current WSL
API is only provided for distribution
creators.

The various functions provided by
WSL.EXE must be contained in the
ILxssUserSession interface!

However, the interface type
information was not disclosed
anywhere.

https://github.com/Biswa96/WslRevers
e

https://github.com/Biswa96/WslReverse

Conclusion

Future

I'm trying to develop WSL SDK v2
without elevation of privilege using
ASP.NET Core and gRPC, and AF_UNIX
socket support introduced since
Windows 10 1803.

This has many benefits, such as MSIX
packages, ARM64 native support, and
support for a broader range of
languages and tools.

Future (Cont.)

GitHub Action support for Windows
Server 2019 and later
◦ Build environment support for WSL

distribution developers
◦ Automation of WSL image creation

that pre-packages familiar developer
tools used by the team

Future (Cont.)

Added support for multiple
programming languages
◦ When the API of the WSL SDK is

stabilized, and the first version can
be released, it will be materialized.

Future (Cont.)

Integration with Docker and Docker
Hub
◦ Using the API provided by Docker

Engine
◦ Build container image for WSL

distribution Export to Root FS
◦ WSL distribution Root FS creation

Import with Docker

Takeaway

WSL API exposed in MS Docs has few features
◦ If you're interested in building a Linux

distribution for WSL, I recommend taking a
look.

◦ It can be made only with Root FS or
released as a package for MS Store.

WSL SDK is currently under development
◦ Looks like I can release version 0.1 in the

not-too-distant future

WSL distributions are up to you to make them.
◦ Not only the distributions in the store, but

you can also customize them to your liking.

About Our
Community

WSLHUB - Korean WSL User Group
◦ https://fb.com/groups/wslhub
◦ https://github.com/wslhub

https://fb.com/groups/wslhub
https://github.com/wslhub

Thank you!
RKTTU@RKTTU.COM

